Major LED manufacturing trends and challenges to support the general lighting application

Semicon Russia 2011, June 1st

Ralph Zoberbier
Director Product Management Aligner
1. SUSS MicroTec Introduction

2. LED application and main manufacturing trends

3. Cost and Yield considerations
 Case study: Photo Lithography
SUSS MicroTec: At a Glance

- SUSS MicroTec is one of the worldwide leading suppliers of equipment and process solutions for microstructuring in semiconductor and related industries.
- Our focus lies on growth markets such as 3D Integration/Advanced Packaging, MEMS, III-V Semiconductors/LEDs.

At a Glance

- Founded 1949 by Karl Süß in Munich
- Went public in 1999 (listed in Deutsche Börse AG’s Prime Standard)
- Revenue of the SUSS MicroTec group in 2010: ~140 Mil.
- Global footprint with more than 8,000 systems installed worldwide

1949 – 2009: Sixty Years of Engineering Spirit
SUSS Solutions for HB LED Manufacturing

Equipment & Process Innovations

Lithography
- Coating, exposure and developing solutions for all relevant litho layer

Permanent Wafer Bonding
- Eutectic bonding (i.e. AuSn)
- Diffusion bonding (i.e. Au-Au)

Nano Imprinting
- Substrate conformal imprint lithography for nm scale production of photonic crystals
- Lens molding and replication

Thin Wafer Handling
- Supported temporary wafer bonding processes: 3M, Brewer Science, TMAT

HB LED top contacts
[Exposed on a MA100e Gen2, Coat/Dev on SUSS Gamma 2010]

Multi wafer bond tooling
High throughput bonding process through multi wafer processing

Full wafer scale nano imprinting
Photonic Crystal Structures etched in Si-Wafer Ø 250 nm

Temporary wafer bonding
Temporary carrier technology to support manufacturing of thin-film LEDs with LLO

MA200 Compact Mask Aligner

Gamma Coater/Developer

SB6/8e Wafer Bonder

SUSS MicroTec
Content

1. SUSS MicroTec Introduction

2. LED application and main manufacturing trends

3. Cost and Yield considerations
 Case study: Photo Lithography
Let's go for General Lighting – so what?

+ Device requirements to enter the market:

- High Lifetime
- High Output
- Low Costs

Manufacturing Trends:

- Chip design optimization
- New materials
- Light efficiency improvements (PSS, PhC, etc.)
- Wafer size transition
- Higher productivity
- Wafer Level Packaging
Lumen per Dollar Gap

Incandescent Light Bulb

- 60W
- 800lm

LED Light Bulb

- Actual cost level: 300lm/$
- Cost target for general lighting: 500lm/$

Source: Epistar
HB LED Device Structures and Trends

Conventional LED device with patterned sapphire substrate (PSS) (essentially all LED chip makers)

- Relatively inexpensive
- Up to 30% active surface lost to the Mesa
- Transparent or small contact needed on the p-side
- Current crowding due to poor conductivity of n-GaN increase total resistance

Thin-film vertical LED device with n-GaN texturing with substrate removal (Osram, Lumileds, Semileds, Cree, Luminus)

- Complexity and Cost
- Good thermal properties
- Larger active area (no MESA)
- n-GaN can be thinned down to bring active layer close to the surface and improve light extraction (surface emitter)
- Lower resistance
Typical manufacturing flow:

Substrates
- Patterned Sapphire Substrate (PSS)

Epitaxy
- Chip patterning
- Thin wafer handling
- Reflective layer
- Photonic Crystals

Device Manufacturing
- Advanced Lithography
- Photo mask supply
- Permanent wafer bonding (Temporary wafer bonding)
- Nano Imprinting

Singulation
- Advanced Lithography
- Photo mask supply
- Permanent wafer Bonding (Temporary wafer bonding)
- Wafer level packaging

Packaging
- Wafer level packaging
- TSV
- Phosphor coating
- Lens molding

SUSS Solutions
- SUSS MicroTec
General HB LED Equipment Trends

- Large wafer size support:
 - 2” and 4” substrates are state of the art, first moves into 6”, firm plans for 200mm

- Cost of Ownership improvements:
 - increase throughput
 - multi-wafer processing
 - higher yield
 - lower CapEx

SUSS multi wafer bonding solution
1. SUSS MicroTec Introduction

2. LED application and main manufacturing trends

3. Cost and Yield considerations

 Case study: Photo Lithography
Today's LED have up to seven lithography layers:

- **General layers:**
 - MESA etch,
 - passivation
 - N contact (lift-off)
 - P contact (lift-off)

- **Additional lithography layers:**
 - Anti-current crowding
 - Surface texturing (not always litho)
 - Light guiding
 - Bond / Bump layer patterning

Source: Epistar
Productivity Improvements
Case Study: Lithography

+ Low CapEx / High throughput lithography solution: Proximity printing

<table>
<thead>
<tr>
<th>Technology</th>
<th>CapEx</th>
<th>Throughput (4“)</th>
<th>Cost / Wafer</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projection (Stepper)</td>
<td>1.000.000$</td>
<td>75 W/h</td>
<td>92 c/wafer</td>
<td></td>
</tr>
<tr>
<td>Proximity Printing (SUSS LED Mask Aligner)</td>
<td>400.000$</td>
<td>150 W/h</td>
<td>18 c/wafer</td>
<td>-80% (!)</td>
</tr>
</tbody>
</table>

+ High Yield Proximity Printing:

Advanced Mask Aligner Lithography

Exposure Optics with:
- High light intensity
- Excellent light uniformity
- Telecentric illumination
- Customized illumination

SUSS MA100e Gen2
Micro-Optics in Front-End Lithography

Micro-Optics is **Key Enabling Technology** in Front-End Lithography

- Customized Illumination
 - Pupil Shaping (DOE)
 - Now: FlexRay™
 - programmable illumination technology from ASML
- Excimer Laser (193nm)
- Laser Beam Shaping
- Laser Beam Homogenizing

- Diffractive Optical Elements (DOE)
- MEMS Mirror Arrays (FlexRay™)
- Microlens Köhler Homogenizer
Macroscopic lenses in a fixed configuration:

Micro lens array coupled with a separated filter plate:

Micro Optics

Illumination Filter Plate
LED Yield Enhancements with Exposure Optics Tuning

Equipment Setup
- IFP-HR "High Resolution"
- IFP-LGO "Large Gap"
- IFP- "Talbot"

Process Result
- 2.5µm L/S in proximity printing (20µm)
- 3D TSV lithography
- Talbot lithography (<5µm in 100µm gap)

HB LED Application
- PowerThinGaN top view
- Sapphire substrate
 - GaN epi-layer

- Front side
 - TSV
Summary

1. Continued cost and light efficiency improvements are key enabler to enter the general lighting market place for LED

2. Photolithography is a significant cost contributor

3. New SUSS MicroTec technologies in proximity printing enable high yield and low resolution lithography on a cost effective equipment platform
Thank You!